

ALVT Series Vortex Flowmeter USER MANUAL

WWW.VAPORTEC.COM.VE

Contents

1 Measuring principle:	4
2 Installation	5
2.1 Identifying the Most Suitable Location	5
2.2 Installation straight pipe requirements	6
3 Wiring	. 10
3.1 Wiring for the 5-terminal board	11
3.1.1 Wiring for 3 wire pulse output	11
3.1.2 Wiring for 2 wire 4~20mA w/ HART	11
3.1.3 Wiring for RS485	. 12
3.2 Wiring for the 12-terminal board	. 12
3.2.1 Wiring for 3 wire pulse output	. 12
3.2.2 Wiring for 3 wire 4~20mA w/ HART	. 12
3.2.3 Wiring for 4 wire 4~20mA w/ HART	. 13
3.2.4 Wiring for RS485	. 13
3.3 Enclosure grounding and elimination of interference	. 14
3.4 Wiring Requirements	. 14
4 Display / User Interface	. 15
4.1 Introduction - Multi-Function LCD Display	. 15
4.2 Engineering Units	. 17
4.3 Introduction – Keypad/Button Functions	. 18
4.4 Displaying Totalized Flows	. 18
4.5 Operating Modes	. 19
5 Parameter Setting	. 20
5.1 Data Entry Procedure	. 20
5.1.1 Code setting	. 20
5.1.2 Numeric Entry	. 21
5.2 Setting list	. 22
5.3 Password setting instruction	. 26
6 RS485 Modbus Communication	. 28
6.1 Interface	. 28
6.2 Commands	. 30
6.3 Calculation of CRC parity code	. 32
6.4 Instrument float data format	. 32
6.5 Instrument float date byte sequence	. 32
6.6 Modbus error reponse	. 33
6.7 Examples of communication	. 34
7 HART communication protocol	. 36
7.1 HART commands	. 36
7.1.1 Command 0: Read transmitter unique identifier	. 36
7.1.2 Command 1: Read primary variable value (PV)	. 36
7.1.3 Command 2: Read primary variable's current and percentage value	. 37

	7.1.4 Command 3: Read primary variable current and dynamic variables	37
	7.1.5 Command 6: Write polling address	38
	7.1.6 Command 11: Read unique identifier associated with tag	38
	7.1.7 Command 12: Read message	39
	7.1.8 Command 13: Read tag, descriptor, date	39
	7.1.9 Command 14: Read primary variable sensor information: device serial number and lin	nits
		40
	7.1.10 Command 15: Read primary variable output information	40
	7.1.11 Command 16: Read final assembly number	41
	7.1.12 Command 17: Write message	41
	7.1.13 Command 18: Write tag, descriptor, date	42
	7.1.14 Command 19: Write final assembly number	42
	7.1.15 Command 34: Write primary variable damping value	43
	7.1.16 Command 35: Write primary variable range values	43
	7.1.17 Command 36: Write primary variable upper limit value	44
	7.1.18 Command 37: Write primary variable lower limit value	44
	7.1.19 Command 40: Enter/Exit primary variable current mode	44
	7.1.20 Command 45: Trim primary variable current DAC zero	45
	7.1.21 Command 46: Trim primary variable current DAC gain	45
	7.1.22 Command 140: Reset totalizer	46
Troub	leshooting and repair	47
8.1	Troubleshooting and repair	47
8.2	Diagnostic Codes	49

8

1 Measuring principle:

Vortex flow sensing technology relies on measuring the number of vortex pulses generated by a bluff body immersed in the flow stream. A bluff body is positioned inside of the vortex flow meter; as flow pass over this bluff body, vortices are generated on either side of the bluff body – this phenomenon is known as the Von Karman Principle. The flow rate can be determined by measuring the number of vortices.

Illustration 1.2 - Von Karman Principle

The frequency of the vortices (f) is in direct proportion to the fluid velocity (v) and in inversely proportional to the width of the obstacle (d).

f=St*v/d	(formula 1)		
v=fd/St	(formula 2)		

St is the Strouhal Number, which is a dimensionless constant related to shape of the shedder element. This constant can be determined empirically.

Because d and St are constant, the fluid velocity (v) and the average velocity (v0) also have a certain relationship, ($v_0 = v/(1-1.25d/D)$). Therefore, v_0 is determined by the frequency of the shedded vortices (f). The ratio between quantity of vortices in a certain period of time and the volumetric flow through the meter is referred to as the instrument's (K) coefficient.

K=N/V (formula 3)

2 Installation

2.1 Identifying the Most Suitable Location

(1) Ambient temperature

Avoid installing the flowmeter in locations where dramatic temperature changes could occur. If the meter is under direct sunlight or high heat, implementing effective heat shielding and/or venting is recommended.

(2) Atmosphere

Avoid installing the meter in locations having a corrosive atmosphere. If installation in corrosive atmospheres is unavoidable, make certain to insure that there is sufficient venting.

(3) Vibration

Avoid installing the meter in location where there are strong vibrations present. If there is ambient vibration present on the pipeline where the meter is mounted, make use of vibration dampening pipe mounts/clamps.

(4) Caution

(a) Make certain that all screws and bolts are fully tightened.

- (b) Make sure that all connections points are free of leaks.
- (c) The process pressure should not exceed the meter's rated pressure.
- (d) Once the meter is under pressure, do not unscrew any bolts and screws.

2.2 Installation straight pipe requirements

3 Wiring

The ALVT vortex flowmeter is provided with 2 different terminal block boards, depending on which options are ordered with the meter. Please refer to Illustration 3.1 and 3.2 below.

Illustration 3.1 - 5-terminal board

Illustration 3.2 - 12-terminal board

For the boards illustrated above, terminals labeled V+ and V- are for power. The \mathcal{N} terminal is for the pulse output. The A & B terminals are the "+" and "-" connections, respectively, for RS485/Modbus communication. The I+ and I- are the + and – for 3-wire or 4-wire 4~20 mA outputs. Terminals RT1, RT2, RT3 are for external RTD sensors. The P+ and P- terminals are inputs for the pressure transmitter. The ALVT multi –variable version has a built in RTD and pressure sensor, so users are not required make connections for temperature or pressure compensation.

The 3-wire pulse output configuration requires a power source of $13.5 \sim 42 V_{DC}$. The ALVT provides a current pulse output with a 50% duty cycle. If the pulse receiving instrument requires a voltage pulse, please add a 500~1000 Ω , ½ W resistor between the " \int " and "V-" terminals.

Please refer to Illustration 3.3 picture below for the 3-wire pulse output wiring diagram.

Illustration 3.3 - 3-wire pulse output wiring

3.1.2 Wiring for 2 wire 4~20mA w/ HART

When there is not temperature and pressure compensation and the power supply is $24V_{DC}$, the maximum load for the analog 4~20mA is 500 Ω . When there is temperature and pressure compensation and the power source is $24V_{DC}$, the maximum load is 400 Ω . When using a HART communicator, make certain to add a 250 Ω load resistor

Illustration 3.4 - Wiring for 2 wire 4~20mA w/ HART

3.1.3 Wiring for RS485

Illustration 3.5 - RS485 Wiring

3.2 Wiring for the 12-terminal board 3.2.1 Wiring for 3 wire pulse output

The 3-wire pulse output requires a $13.5 \sim 42 V_{DC}$ power supply. The ALVT provides a current pulse output with a 50% duty cycle. If the pulse receiving instrument requires a voltage pulse, please add a 500~1000 Ω , $\frac{1}{2}$ W resistor between the " $\int \Gamma$ " and "V-" terminals.

Illustration 3.6 - 3-wire pulse output wiring

3.2.2 Wiring for 3 wire 4~20mA w/ HART

When the power supply is $24V_{\text{DC}},$ the max load for the analog 4~20mA is 500 $\Omega.$

Illustration 3.7 - Wiring for 3-wire 4~20mA w/ HART

3.2.3 Wiring for 4 wire 4~20mA w/ HART

When the power supply is $24V_{DC}$, the max load for the analog $4\sim 20$ mA is 500 Ω .

Illustration 3.8 -: Wiring for 4-wire 4~20mA w/ HART

3.2.4 Wiring for RS485

Illustration 3.9 - RS485 Wiring

3.3 Enclosure grounding and elimination of interference

In this product, the power supply for the signal processing circuit is transferred from the external power supply through DC-DC isolation transformer with advanced grounding technology. The field interference frequency is well isolated.

When using this product, the "-" power supply terminal should <u>not</u> be connected to Earth ground .When this product is used in an environment where strong EMI/RFI is present, the enclosure should be connected to the earth using a grounding cable, so that the interference can be eliminated.

3.4 Wiring Requirements

1) Do not make wiring connections in an explosive environment when the power is on.

2) Open the rear cover first, and then feed the cable into the rear compartment of the enclosure through the water-proof cord grip/cable gland.

3) Make all wiring connections in accordance with sections 3.1 and 3.2 of this manual.

4) Refer to illustration 3.10 below for the optimum wiring configuration to prevent water from entering the enclosure via the cable.

Illustration 3.10 – Wiring Considerations

4 Display / User Interface

The ALVT series vortex flowmeter's display is used for displaying the process variable measured by the instrument and for parameter setting. Various combinations of measured variables including mass or volumetric flow, temperature, and pressure may be displayed, and there are multiple engineering units available for displaying each of these process variables. Parameter programming is achieved via the display module's 3-button keypad.

4.1 Introduction - Multi-Function LCD Display

The ALVT Series Vortex Flowmeter's multi-function LCD display may display information such as raw frequency, momentary flow rate, and total accumulated flow. Versions of the instrument that include auto pressure/temperature compensation can also display other variables including temperature, pressure, density, and mass flow rate. Please refer to Illustration 4.1 below showing the LCD display.

Illustration 4.1 - LCD display

The LCD display contains either two three lines of information. In versions that include pressure/temperature compensation, the first line is for the measured variable; it will indicate what variable is being displayed in lines 2 and 3. The second line may be configured to indicate frequency, temperature, pressure or momentary flow. The third line is used to indicate total accumulated flow. Versions of the meter without pressure/temperature compensation do not include the top line for indicating the variable and will always show flow rate on the first line and totalized flows on the second. Please reference Illustration 4.2 below

Illustration 4.2 - Momentary flow and Total Accumulated flow

Versions of the ALVT that feature pressure/temperature compensation can also indicate the mass flow of saturated steam or superheated steam via calculation. When indicating mass flow, the first line of the LCD display will display an "M" character indicating MASS, as shown in Illustration 4.3.

Illustration 4.3 - Display showing instantaneous and accumulated total mass flow of steam

The version of the ALVT that includes pressure/temperature compensation can also indicate temperature, pressure, and density. The displayed variable is easily changed via use of the display module's keypad. Illustration 4.4 shows an example of the display when it is indicating temperature.

Users may also make use of the circular display mode, where the display automatically rotates between all measured variables one-by-one.

Illustration 4.4 - Display showing temperature reading

You can also set the lower row to display multiple variables in circular display mode.

Please refer to Table 4.1 below for a general overview of the available engineering units for each measured variable. As indicated by the chart, the units of density may be different based on the method of calculation. When using the set-parameter compensation method, the units of density are set by user. When using automatic pressure/temperature compensation, the units of measure for density are kg/m³. Please reference to section 2 of this manual for details on setting the parameters.

If alternate units of measure such as ft³/m or GPM are required, please contact the factory. Virtually any engineering units are possible, but some minor adjustments to the software must be made at the factory.

According to the formula for calculating the volumetric flow rate:

 $Q_{N} = 3.6 * f/K$

When displaying volumetric flow, the units of measure are determined by the units of K-factor, which is set by the user. For example, if the K=7.5548 pulses per liter (Λ /L), the units of momentary volume flow displayed should be L/hour and the unit of accumulated total volume is L

According to the formula for calculating the mass flow:

When displaying volumetric flow, the unit is decided by the units of density (ρ) and the user-set K-Factor. Units of momentary mass flow may be Kg/hour or Tons/hour. The unit of corresponding accumulated flow would then be kg or Ton.

Subject Variable		Unit	Circular display code	
TOTAL	Total flow	N m^3 , m^3 ,L, kg or t	01	
TEMP	Temperature	°C	02	
PRES	Pressure	MPa or kPa	03	
FREQ	Frequency	Hz	04	
DENS	Density	kg/ m^3	05	

Table 4.1- Engineering units

4.3 Introduction – Keypad/Button Functions

The three buttons located above the LCD have different functions different during run mode and parameter setting mode. The buttons (Please reference illustration above) located on the top of display, are labeled with a \longleftrightarrow symbol, a \oiint symbol, and a \checkmark symbol

Picture 4.5 buttons

During run mode, the \bigcirc button may be used to switch between available display content. The \longleftrightarrow button can be used to switch to momentary flow rate. The \dashv button is not functional when the flowmeter is in run mode.

When the flowmeter is in parameter setting mode, the \longleftrightarrow button is used to move the cursor left or right. The \square button is used move to up down, or increment/decrement a numeric value. The \square button is used to confirm an entry. All parameter and code setting for the ALVT is achieved via these 3 buttons

4.4 Displaying Totalized Flows

The ALVT can display up 9 digits left to decimal point and 3 digits to the right. When the there is more than six digits, the total flow reading will be split into two and displayed in sequence. The first part of the sequence will display the right-most digits and the second part of the sequence will display the remaining digits to the left. The \leftrightarrow button may be used to switch between the right digits and left digits. The left digits will be displayed with a mark of "x1000". Please refer to Illustration 4.6 below:

Illustration 4.6 – When displaying the left digits, an "x1000" mark is displayed

To display the right digits, press the \leftrightarrow button and the display will read out as shown

illustration 4.7 below.

Illustration 4.7 - Displaying the right-most digits

The readouts shown in Illustrations 4.6 and 4.7 would indicate a total flow of 569864.581 kg.

4.5 Operating Modes

The ALVT series vortex flowmeter has three different operating modes

- Run mode
- Parameter setting mode
- Calibration mode

In run mode, the LCD display of flowmeter will indicate parameters or measurement results as discussed in the prior sections of this manual. In parameter setting mode, users may adjust the parameters while the flowmeter is still measuring without any effect the measurement.

Calibration mode is typically only used at the factory when the instrument before the instrument is delivered or if it has been returned for re-calibration. The displayed instantaneous flow & the 4-20 mA output as well as the temperature & pressure inputs are all calibrated against traceable standards at the factory. In order to recalibrate in the field, traceable calibration standards must be available. If these standards are available, please contact the factory for assistance with performing field re-calibrations.

ALVT

5 Parameter Setting

Note: Every ALVT digital vortex flowmeter has been pre-set at the factory prior to delivery based on the end user's stated application requirements. Under normal circumstances, the end-user will not need to access the parameter setting menu to make changes. If changes do need to be made, they should be done in strict accordance with the procedures outlined in this section of the manual.

To change parameters such as fluid media and output type; a procedure referred to as "Code setting" is described in this manual. In order to change values such as the size of pipeline, the flow range, and the amount of damping; the procedure is referred to as "Numeric entry".

In parameter setting mode, the \leftrightarrow button is used to move the cursor left or right. The button is used move to up down, or increment/decrement a numeric value. The \downarrow button is used to confirm an entry.

5.1 Data Entry Procedure

As mentioned above, there are two different types of data that may be entered via the display module's keypad; Code Setting for parameters such as output type and compensation method and Numeric Entry for parameters like pipe size and high/low flow limit. Section 2.1.1 will detail the Code Setting procedure and section 2.1.2 will discuss numeric entry.

5.1.1 Code setting

To begin the code setting procedure from the instrument's Run Mode, press and hold down the

↓ button and then press the button (See Illustration 5.1 below).

Illustration 5.1 - Enter or quit code setting

Next, the LCD display will display two lines of code; the upper line indicates the parameter name code of the parameter that is being viewed while the lower line indicates what the parameter value is presently set to. Section 2.2 of this manual provides a complete list of the parameter name codes and their available parameter value settings.

For example, in Illustration 5.2 below, location code 01 shown in the top line is indicating that

the "Fluid media phase" parameter is being viewed. The value code 02 in the lower line indicates that the medium is "liquid".

Illustration 5.2 - Code setting

5.1.2 Numeric Entry

To begin the numeric entry procedure from the instrument's Run Mode, press and hold down the [] button, and then press the [] button. (See illustration 5.3 below).

Illustration 5.3 - Enter or quit digital setting

The upper line on the LCD display indicates the numeric parameter name code of the parameter being viewed and the lower line indicate the current value of the numeric parameter. The blinking digit is the number that is being modified. Section 5.2 of this manual provides a complete list of the numeric parameter name codes and the range of values that each parameter may be set to.

For example, refer to Illustration 5.4 below. The "001" in the upper line indicates that the "Upper limit of pressure" parameter is being viewed and the "4.0000000" displayed in the lower line is indicating that this parameter's value is set to 4.00Mpa , which will also to the full-scale 20mA output.

Illustration 5.4 – Numeric entry display

While the numeric entry codes are being viewed, the \longleftrightarrow button may be used to switch between which numbers on the display is blinking, and the \Box button is used to increment the value of number that is blinking. Pressing the \dashv button will confirm the parameter name code selection and cause the right-most digit of the parameter value code to start blinking. The numeric value may be modified in the same manner as the numeric parameter name code; pressing the \dashv button will confirm the parameter value selection and then advance the screen to the next numeric parameter name code.

To exit code setting, press and hold the 🖵 button and then press the 🗌 button. Upon

exiting code setting, the flowmeter will save the new settings to its' internal flash memory and return the LCD display to run mode.

Chart 5.1 Code setting address

Code setting address	Code setting address		Description of code			
1	Modium tuno	1	Gas			
1	меанит туре	2	Liquid			
		00	Do not need density compensation ,			
		00	indicate volume flow			
		01	Density as set by user			
	Density compensation		Density compensation based on			
		02	measured pressure (For measurement of			
		02	saturated steam, only for P≤2Mpa. If			
02			P>2Mpa , the function code is 05)			
02			Density compensation based on			
		03	measured temperature(For measurement			
			of saturated steam)			
			Density compensation based on			
		04	temperature and pressure compensation			
			(For superheated steam)			
		05	ρ=A+BP (Density compensation based on			

5.2 Setting list

ALVT

			measured pressure)
		00	ρ=A+BT (Density compensation based on
		06	measured temperature)
		07	Reserved for future use
			Calculate normal volume via temperature
		08	and pressure compensation,(The normal
			definition is T=20 °C,P=101.325 KPa)
		09	AGA-8 to calculate compressibility factor
	Output	01	Pulse (Please refer to D008 for K factor)
		02	4~20mA or HART enabled 4~20mA
05		03	200-1000HZ frequency output, set what to
05			output in C06
		04	Totalizer impulse; set volume/pulse in
			D013
		00	Flow rate
06		01	Temperature
	parameter	02	Pressure
07	Damping	01~99	1~99 seconds
0.9	Instrument number	00~99	For Modbus
US	instrument number	00~15	For HART communication

Code setting address		Code	Description of code
		01	1200 no parity 1 stop bit
		02	1200 even parity 1 stop bit
		03	2400 no parity 1 stop bit
		04	2400 even parity 1 stop bit
		05	4800 no parity 1 stop bit
		06	4800 even parity 1 stop bit
		07	9600 no parity 1 stop bit
		08	9600 even parity 1 stop bit
		09	19200 no parity 1 stop bit
		10	19200 even parity 1 stop bit
		11	1200 odd parity 1 stop bit
00	Poud roto	12	2400 odd parity 1 stop bit
09	Daud Tale	13	4800 odd parity 1 stop bit
		14	9600 odd parity 1 stop bit
		15	19200 odd parity 1 stop bit
		16	38400 no parity 1 stop bit
		17	38400 even parity 1 stop bit
		18	38400 odd parity 1 stop bit
		19	57600 no parity 1 stop bit
		20	57600 even parity 1 stop bit
		21	57600 odd parity 1 stop bit
		22	115200 no parity 1 stop bit
		23	115200 even parity 1 stop bit
		24	115200 odd parity 1 stop bit
		00	/s
10	Time unit for flow rate	01	/min
		02	/h
		01	kg
11	Mass unit	02	ton
		03	lb
		01	m3
		02	L
12	Volume unit for flow rate	03	ft3
		04	US gal
		05	UK gal
		01	MPa
13	Pressure unit	02	kPa
10	Pressure unit	03	Psi
		04	Bar

Code setting address	ltem	Code	Description of code
		01	°C
14	Temperature unit	02	۴
		03	°K
15	Number of digits to the right	00~05	00: No digits to the right for total flow
			01~05: 1~5 digits to the right for total flow
16	Parameter displayed on top	01	Flow rate
	row of LCD	02	percentage of full-scale flow rate
		00	No display (blank)
		01	Total flow
17	Parameter displayed on	02	Temperature
	bottom row of LCD	03	Pressure
		04	Density
		05	Frequency
10	Dopoity upit	01	Kg/m3
10	Density unit	02	lb/ft3
	Timing between	00~30	00: circular display mode off
30	parameters for circular		1~30: 1~30 seconds between changes of
	display mode		the displayed parameter
	First parameter displayed		00: circular display mode off
31	in circular display mode	00~05	01~05: see chart 4.1
35	Last parameter displayed in circular display mode	00~05	Same as above
		01	LL_LH_HL_HH
20	Sequence of float data type	02	HH_HL_LH_LL
38	(RS485 communication)	03	LH_LL_HH_HL
		04	HL_HH_LL_LH
47		0	off
47	Password function	1	on
10	Set persword	0	Keep the password
40	Set password	1	Change the pass word
10	Spectrum opplyzia	0	Working status
49	Spectrum analysis	12	spectrum analysis checking
50	Totalizer reset	0	Reset totalizer to 0
50		1	Default
55	Times of over total flow	00~99	Read only
60	Restore to backup date	6	Restore to backup date
61	Save setting backup	16	Save current settings for backup

Note:

1) If the units for flow rate are changed or if measurement is changed from volumetric flow rate to mass flow, users can reset the total flow to 0 or record the current total flow

2) Total flow= (time of over total flow)* (max display of total flow) + (current total flow reading)

Numeric setting address	ltem	Range of values	Description of code
001	Max pressure	[-99999,999999]	Upper limit for inlet/outlet pressure
002	Min pressure	[-99999,999999]	Lower limit for inlet/outlet pressure
003	Max temperature	[-99999,999999]	Upper limit for inlet/outlet temperature
004	Min temperature	[-99999,999999]	Lower limit for inlet/outlet temperature
005	Preset density	(0, 999999]	When C02=01, the meter will use this density, units according to setting
008	K factor	(0, 999999]	K coefficient determined at calibration, unit is pulses/Liter. Flow=3.6*freq/K
009	Max flow rate	(0, 999999]	Unit same as flow rate, Max/min flow
010	Min flow rate	[0, 999999]	rate of 4~20mA and 200~1000Hz output
013	Pulse factor for total flow	(0, 999999]	Used when freq output is configured as totalizer impulse
014	Ambient pressure	(0, 999999]	Units according to setting
015	Pipe size	(0, 999999]	unit is mm
021	Small signal cutoff	[0, 999999]	unit is Hz
030	specific density of compressibility factor	[0.55,0.90]	For calculation of compressibility factor of natural gas
031	mol% of N2 and H2	[0, 0.1]	For calculation of compressibility factor of natural gas
032	mol% of CO2	[0, 0.3]	For calculation of compressibility factor of natural gas
033	Higher heating value	[20, 48]	KJ/mol,For calculation of compressibility factor of natural gas

Chart 5.2 Numeric setting addresses

Note:

Max freq output=10KHz, the pulse factor for total flow should be set properly according to the current total flow.

5.3 Password setting instruction

There is no factory default password in a new ALVT vortex flowmeter. Users can set a password following the procedure below.

Enter code setting mode and set C47 to 01, confirm, and then exit. Next, enter the password setting interface as shown in Illustration 5.5

Illustration 5.5 - Password setting interface

To set a new password, the correct password must be input twice; the password will become effective only if the both entries are the same. If both entries are not the same, the procedure will need to be repeated from the start. If power is lost during the process of changing the password, the password will be automatically set to 2000 as the default. When a password becomes effective, users must input the correct password before accessing the parameter setting menus.

Illustration 5.6 - Password input screen

6 RS485 Modbus Communication

6.1 Interface

• The communication interface is RS485 type; the range of available baud rates is 1200~115200.

- The Modbus output is accessed via wiring terminals "A" and "B".
- The ALVT's Modbus output is MODBUS-RTU type.

The Modbus signal follows the format: Address code - function code – date segment – CRC calibration code. The space between two characters should not exceed one character, or it will be considered to be the beginning of a new message or the end of an old message. The message is combined with hexadecimal arrays.

• De	efinition	of the	dates:	Please	reference	to the	e chart 6.1	below.
------	-----------	--------	--------	--------	-----------	--------	-------------	--------

Register address	Usage Register type		Data type
0~1	Flow rate	Read only	Float
2~3	Frequency	Read only	Float
4~5	Reserved	Read only	Float
6~7	Pressure	Read only	Float
8~9	8~9 Temperature		Float
10~11	10~11 Density		Float
12~13	12~13 Reserved		Float
14~15	14~15 Reserved		Float
16~17	Reserved	Read only	Float
18~19	Reserved	Read only	Float
20~21	Reserved	Read only	Float
22~23	Reserved	Read only	Float
24~25	Total flow	Read only	Float

Chart 6.1 Address of the displayed date

The data that may be displayed includes flow rate, frequency, pressure, temperature, density and total flow. If the meter does not have density compensation, then the pressure and temperature readings will both always be 0. The parameter data shown in the above chart can be read by using function code 03 and the corresponding address of the desired data field.

The data addresses are as shown in the below table:

Register	Usage	Range	Register	Data	
	9-		Туре	format	
1000	Fluid type C01	1~2	Read only	Short	
1001	Density compensation C02	0~9	Read/Write	Short	
1004	Output C05	1~4	Read/Write	Short	
1005	200-1000Hz output parameter C06	1~3	Read/Write	Short	
1006	Damping C07	1~99	Read/Write	Short	
1007	laster mant autochan COO	HART(0~15)	Deed	Chart	
1007	Installent humber Coo	Modbus(1~99)	Read	Short	
1008	Baud rate C09	1~24	Read	Short	
1009	Unit of time C10	0~2	Read/Write	Short	
1010	Mass unit C11	1~3	Read/Write	Short	
1011	Volume unit C12	1~5	Read/Write	Short	
1012	Pressure unit C13	1~4	Read/Write	Short	
1013	Temperature unit C14	1~3	Read/Write	Short	
1014	Right digits number for total flow C15	0~5	Read/Write	Short	
1015	Upper row display parameter C16	1~2	Read/Write	Short	
1016	Lower row display parameter C17	0~5	Read/Write	Short	
1017	Density unit C18	1~2	Read/Write	Short	
4000	Timing between parameters for circular	0.00	Read/Write	Short	
1029	display mode C30	0~30			
4000	First parameter displayed in circular	0.5		Short	
1030	display mode C31	0~5	Iteau/ Wille		
1021	Second parameter displayed in circular	0.5	Dood/W/rite	Short	
1051	display mode C32	0-5	i teau/ write	Short	
1032	Third parameter displayed in circular	0~5 Read/Write	Read/Write	Short	
1002	display mode C33	0.0	Reau/ White	Snort	
1033	Fourth parameter displayed in circular	0∼5 Read/Write	Read/Write	Short	
1000	display mode C34				
1034	Fifth parameter displayed in circular	0~5	Read/Write	Short	
1001	display mode C35			Short	
1035	C36	0~1	Read/Write	Short	
1036	C37	0~10	Read/Write	Short	
1037	Sequence of float C38	1~4	Read/Write	Short	
1046	Password function C47	0~1	Read	Short	
1047	Set password C48	0~1	Read	Short	
1048	Spectrum analysis checking C49	0~12	Read/Write	Short	
1049	Reset totalizer to 0 C50	0~1	Read/Write	Short	
1050	C51	0~0	Read/Write	Short	
1051	C52	0~99	Read/Write	Short	
1052	C53	0~0	Read/Write	Short	
1053	C54	0~0	Read/Write	Short	

Chart 6.2 Register a	addresses for	code setting
----------------------	---------------	--------------

1054	1054 Time over totalflow C55		Read only	Short
1059 Restore to backup date C60		0~99	Read/Write	Short
1060 Save setting backup C61		0~99	Read/Write	Short

Users may use function codes 04 and 06 to access to the above addresses for code setting.

Numeric register addresses are shown below.

Pagiatar	lloogo	Range of	Register	Data
Register	Usage	values	Туре	format
2000~2001	D001 Max pressure	-1e5~1e6	Read/Write	Float
2002~2003	D002 Min pressure	-1e5~1e6	Read/Write	Float
2004~2005	D003 Max temperature	-1e5~1e6	Read/Write	Float
2006~2007	D004 Min pressure	-1e5~1e6	Read/Write	Float
2008~2009	D005 Density	0~1e6	Read/Write	Float
2014~2015	D008 K factor	0~1e6	Read/Write	Float
2016~2017	016~2017 D009 Max flow rate		Read/Write	Float
2018~2019	18~2019 D010 Min flow rate		Read/Write	Float
2024~2025	D013 Factor for total flow output	0~1e6	Read/Write	Float
2026~2027	D014 Ambient pressure	0~1e6	Read/Write	Float
2028~2029	D015 Pipe size	0~1e6	Read/Write	Float
2040~2041	D021 Small signal cutoff	0~1e6	Read/Write	Float
2058~2059	D030 Specific density	[0.55, 0.90]	Read/Write	Float
2060~2061	D031 mol% of N2 and H2	[0, 0.1]	Read/Write	Float
2062~2063	D032 mol% of CO2	[0, 0.3]	Read/Write	Float
2064~2065	D033 Higher heating value	[20, 48]	Read/Write	Float

Chart 6.3 Register addresses for numeric values

The chart above indicates the register address, usage of the register, range of values, read/write register type and data type. The above registers are all holding registers; the supporting function code is 03,04,06,16.

6.2 Commands

Function codes 03 and 04 are the supported codes for reading the registers. Function code 06 is used for writing to a single register. Function code 16 is for writing to multiple registers. Function code 06 is supported for writing short data only. Function code 16 is supported for writing both short and floats data types.

Request	Response
01 : Address	01: Address
03 : Function code	03 : Function code
00 : Register address upper	04 : Number of bits
00 : Register address lower (display the address)	80 : Data 1

SmartMeasurement

00 : Register number upper	04 : Data 2
02 : Register number lower	80 : Data 3
CRCL : CRC Parity code lower	80 : Data 4
CRCH : CRC parity code upper	CRCL : CRC Parity code lower
	CRCH : CRC parity code upper

Note: To read a float data register, the quantity of the register address(s) and the value should be read, otherwise an error response will be generated.

Function code 04 – Same as function code 03

Function code 06 - write single register

Request	Response
01 : Address	01: Address
06 : Function code	06 : Function code
00 : Register address upper	00 : Register address upper
01 : Register address lower (code setting address)	01 : Register address lower
00 : Value higher	00 : Value higher
04 : Value lower	04 : Value lower
CRCH : CRC parity code upper	CRCH : CRC parity code upper
CRCL : CRC Parity code lower	CRCL : CRC Parity code lower

Note: Function code is only supported for writing short dater.

Function code 16- write multiple registers

Request	Response
01 : Address	01: Address
10H : Function code	10H : Function code
00 : Register address upper	00 : Register address upper
01 : Register address lower (digital setting address)	01 : Register address lower
00 : Quantity of upper register	00 : Quantity of upper register
02 : Quantity of lower register	02 : Quantity of lower register
04 : Quantity of values	CRCH : CRC parity code upper
86h : Value 1	CRCL : CRC Parity code lower
00 : Value 2	
00 : Value 3	
48H: Value 4	
CRCH : CRC parity code higher	
CRCL : CRC Parity code lower	

Note: Function code 16 is supported to write both short and float data. However, for float data, the first register address and the quantity of the registers must be even, or writing is not permitted.

6.3 Calculation of CRC parity code

Request	Response
01 : Address	N1 CRC=0FFFFH is initial value
10 : Function code	N2 XOR operation the CRCL and N1
00 : Register address upper	N3 CRC move 1 bit right , if move out is 1 bit
01 : Register address lower	N4 CRC=CRC XOR A001H
00 : Register quantity upper	N5 if move out is 0 , CRC=CRC
04 : Register quantity lower	N6 Move right 8 times to finish the N1 calculation
04 : Data quantity	N7
80 : Data 1	N8 XOR operation the CRCL and N11
04 : Data 2	N9 CRC move 1 bit right , if move out is 1 bit
80 : Data 3	N10 CRC=CRC XOR A001H
80 : Data 4	N11 if move out is 0, CRC=CRC
CRCL : CRC Parity code lower	Move right 8 times to finish the N11 calculation
CRCH : CRC Parity code upper	Get the CRC calibration value

6.4 Instrument float data format

The storage sequence of the 4-bit float format is as below:

Address: 0 1 2 3

Content: ммммммм ммммммм емммммм seeeeeee

Using the IEEE standard method, do not store 1 on the top digit, a top digit of 1 means negative. A top digit of 0 indicates positive. The 23 mantissas and a 1 on the top digit, which is concealed, constitute a 24-bit fixed point true form decimal, which is a decimal having mantissas < 1 and \geq 0.5. The lowest 8 bits are the exponent-marker using shift code method. The exponent marker equals to the actual value minus 127. For example: 7=86H-7FH, -10=75H-7FH

e.g.: 100=0x00,0x00,0x42,0xc8

-100=0x00,0x00, 0xc2,0xc8

0=0x00.0x00.0x00.0x00 (exponent-marker is 0, the number is 0)

6.5 Instrument float date byte sequence

Code setting C38 is used for setting the float date byte sequence.

Float type data will occupy 4 bytes (2 registers). To set the byte order of the float data, please modify the register as follows:

1: LL_LH_HL_HH - the lower 16 register bytes come first, the lower 8 bytes within the 16 bytes come first.

eg: 100=0x00,0x00, 0xc8, 0x42

-100=0x00,0x00,0xc8,0xc2

2: HH_HL_LH_LL - the higher 16 register bytes come first; the higher 8 bytes within the 16 bytes come first.

eg: 100=0x42,0xc8,0x00,0x00

-100=0xc2,0xc8 ,0x00,0x00

3: LH_LL_HH_HL - the lower 16 register bytes come first, the higher 8 bytes within the 16 bytes come first.

eg: 100=0x00,0x00,0x42,0xc8

-100=0x00,0x00,0xc2,0xc8

4: HL_HH_LL_LH - the higher 16 register bytes come first, the lower 8 bytes within the 16 bytes come first.

eg: 100=0xc8,0x42,0x00,0x00

-100=0xc8,0xc2,0x00,0x00

6.6 Modbus error reponse

When the host sends a command and asks for a correct response, one three things will occur:

1) If the command from the host is correct and processable, the flow meter will provide a correct response.

2) If the flowmeter received a command, but detected parity, the error of LRC and CRC will cause no response. The host will process an overtime command.

3) If the flowmeter received a correct command, but cannot process it (read or write a non-existing register etc.), the flowmeter will send an error response

An error response has two byte sections to show how it differs from a correct response.

Function code section: In a correct response, the flowmeter will copy the original function code sent from the host, and the highest bytes of them are all 0(all function codes are smaller than 0x80). In an error response, the flowmeter will set the highest bytes to 1. The host can detect the error code and know the contents of the error when it detects that the highest bytes of function codes are 1.

Value section: In an error response, the flowmeter will reply a byte as the error code to define the content of the error. Please reference to the chart below for the error codes and their definitions:

Code	Name	Meaning
01	Illegal	Flowmeter cannot process the function code in a command. It
01	function code	may be this function code can only be used on a new device, or it

		can also indicate that the flowmeter is under error status.
02	Illegal	The flowmeter cannot process with the address in the
02	address	command.
03	Illegal contents of value	The content of the value in the command is not acceptable for the flowmeter.
04	Flow meter function failed	An unrecoverable failure happened when the flowmeter is trying to respond.
05	Reponses	The flowmeter is taking too long to process the command. This error code prevents the host from processing an overtime command.
06	Flowmeter is busy	To alert the host that the flowmeter is processing a command which will take a long time and that the host should resend the command when the flowmeter is free.

6.7 Examples of communication

The flowmeter's Modbus address is 01, baud rate=4800 (C08=01, C09=05, C38=02).

Example 1: Read flow rate F,F=916.49 (4 bytes float)

Host command: 01 03 00 00 00 02 C4 0B

Flowmeter response: 01 03 04 44 65 1F CE 77 78

Example 2: Read total flow (current totalizer value)

Host command: 01 03 00 24 00 02 84 00

Flowmeter response: 01 03 04 44 9D 1E 3F 36 9D

Example 3: Read all of the values displayed on the flowmeter, including flow rate, frequency, pressure, temperature, density, total flow all together 13 value s(52 bytes)

Host command: 01 03 00 00 00 1A c4 01 Flowmeter response: 01 03 34 44 65 1F CE (flow rate=916.49) 42 48 00 00 (frequency=50) 00 00 00 00 (reserved=0) 00 00 00 00 (pressure=0) 00 00 00 00 (temperature=0) 3F 80 00 00 (density=1.00)

- 00 00 00 00 (reserved=0)
- 00 00 00 00 (reserved)
- 00 00 00 00 (reserved)
- 00 00 00 00 (reserved)
- 00 00 04 E8 (reserved=1256)
- 00 00 00 00 (reserved=0)
- **44 9D 1E 3F** (total flow in float=1256.94)
- 5A (CRCL)
- 91 (CRCH)

7 HART communication protocol

7.1 HART commands

7.1.1 Command 0: Read transmitter unique identifier

Command format

Return to the expansion device type code, version number and identification number

Request: None

Response:

Byte 0:	254
Byte 1:	Manufacturer's ID
Byte 2:	Manufacturer's device type
Byte 3:	Number of request preambles
Byte 4:	Revision level of universal command
Byte 5:	Revision level of transmitter document
Byte 6:	Software revision level
Byte 7:	Hardware revision level
Byte 8:	Flags, none defined at this time
Byte 9-11:	Device Identification Number

Test command

Send 0 command: FF FF FF FF FF 62 80 00 00 82; to request information from the instrument

Receive 0 command: FF FF FF FF FF 06 80 00 0E 00 00 FE 1A 1A 05 05 00 00 00 AD 18 8C 4F

7.1.2 Command 1: Read primary variable value (PV)

Command format:

Return to primary variable value in float.

Request: None

Response:

Byte 0: Primary variable unit code

Byte 1-4: Primary variable

Remark: The unit code is 75: kg/hour, 19:m3/hour.

Set primary command to flow rate.

Test command:

Send command 1: FF FF FF FF FF 82 9A 1A AD 18 8C 01 00 3A ;to read the IEEE754 float value of the primary variable.

Receive command 1:FF FF FF FF FF 86 9A 1A AD 18 8C 01 07 00 00 13 00 00 00 02A

7.1.3 Command 2: Read primary variable's current and percentage value

Command format:

Read the current and percent of the primary variable, the current of primary variable always matches the AO analog current output of the instrument. Percent is not restricted to within $0\sim100\%$, if it is beyond the limit of primary variable, it will find the limit of the transmitter.

Request: None

Reponses:

Byte 0-3: Analog output current mA, IEEE754

Byte 4-7: Percent of range, IEEE 754.

Test command:

Send command 2:FF FF FF FF FF FF 82 9A 1A AD 18 8C 02 00 39 ; to read the current and primary variable percent of range.

Receive command 2:FF FF FF FF FF 86 9A 1A AD 18 8C 02 0A 00 00 40 80 00 00 00 00 00 00 F7

7.1.4 Command 3: Read primary variable current and dynamic variables

Command format:

Read the current of primary variable and 4 preset dynamic variables at maximum. The current of the primary variable always matches the AO analog output current of the instrument. Every type of device has a definition of a relative dynamic variable, for example the secondary variable is the temperature sensor.

Request: None

Response:

- Byte 0-3: Analog output current mA, IEEE 754
- Byte 4: Primary variable unit code
- Byte 5-8: Primary variable, IEEE 754
- Byte 9: Secondary variable unit code
- Byte 10-13: Secondary variable, IEEE 754
- Byte 14: Tertiary variable unit code

Byte 15-18: Tertiary variable, IEEE 754

Byte 19: Quaternary variable unit code

Byte 20-23: Quaternary variable, IEEE 754

Remark: Primary variable is flow rate. The unit code is 75:kg/hour, 19:m3/hour;

Secondary variable is total flow. The unit code is 61:kg, 43:m3;

Tertiary variable is frequency. The unit is Hz;

Quaternary variable is temperature. The unit is 32: °C;

Test command:

Send command 3:FF FF FF FF FF 82 9A 1A AD 18 8C 03 00 38; to read dynamic variables

Receive command 3:FF FF FF FF FF 86 9A 1A AD 18 8C 03 1A 00 00 40 80 00 00 13 00 00 00 2B 48 33 5A 4B 26 00 00 00 00 20 00 00 00 82

7.1.5 Command 6: Write polling address

Command format:

This is a data link management command. The command writes a polling address to the device. This address is used to control the AO of primary variable and providing device ID.

Only when the polling address of the instrument is 0 will the AO output of primary variable be available. If the address is 1~15, AO will be not activated and will not respond, AO will be minimum value; transmission status will be the 3rd status-----primary variable AO fixed; max and min alarm not implemented. If polling address is written back to 0, AO will be activated again and will respond.

Request:

Byte 0: Device polling address

Response:

Byte 0: Device polling address

Test command:

Send command 6:FF FF FF FF FF FF 82 9A 1A AD 18 8C 06 01 00 3C ; to write POLLING ADDRESS

Receive command 6:FF FF FF FF FF 86 9A 1A AD 18 8C 06 03 00 00 00 3A

7.1.6 Command 11: Read unique identifier associated with tag

Command format:

This is a data link management command. This command will return the device type, revision level and device identification number of the device which matches to the tag. Process the command upon receipt of the expansion address or broadcast address. The expansion

addresses in command and response are the same.

Request:

Byte 0-5: Tag, Packed ASCI

Response:

Byte 0:	Device type code for expansion
Byte 1:	Manufacturer Identification code
Byte 2:	Manufacturer device type
Byte 3:	Number of request preambles
Byte 4:	Revision level of universal command
Byte 5:	Revision level of transmitter document
Byte 6:	Software revision level
Byte 7:	Hardware revision level
Byte 8:	Flags, none defined at this time.
Byte 9-11:	Device identification number

Test command:

Send command 11: FF FF FF FF FF FF 82 9A 1A AD 18 8C 0B 00 30 ; Read relevant info of the device such as unique identifier associated with tag

Receive command 11: FF FF FF FF FF 86 9A 1A AD 18 8C 0B 0E 00 00 FE 1A 1A 05 05 00 00 00 00 AD 18 8C FD

7.1.7 Command 12: Read message

Command format:

To read message

Request: None

Response:

Byte 0-23: Message

Test command:

Send command 12:FF FF FF FF FF FF 82 9A 1A AD 18 8C 0C 00 37 ; read message

Receive command 12:FF FF FF FF FF 86 9A 1A AD 18 8C 0C 1A 00 00 59 00 74 D6 05 8F 49 41 58 80 42 47 25 40 4C 81 04 8F 0C 54 D3 3D 28 20 10

7.1.8 Command 13: Read tag, descriptor, date

Command format:

Read device tag, description and date.

Request: None

Response:

Byte 0-5: Tag,ASCII

Byte 6-17: Descriptor, ASCII

Byte 18-20: Date: day,month,year

Test command:

Send command 13:FF FF FF FF FF 82 9A 1A AD 18 8C 0D 00 36 ;read device tag, descriptor and date

Receive command 13:FF FF FF FF FF 86 9A 1A AD 18 8C 0D 17 00 00 50 11 E0 82 08 20 58 F4 94 15 88 06 30 F5 CD 15 41 52 0F 01 6F E2

7.1.9 Command 14: Read primary variable sensor information: device serial number and limits

Command format:

Read device information

Request: None

Response:

Byte 0-2: Sensor serial number MSB, 24-BIT unsigned integer

Byte 3: Flow rate unit

- Byte 4-7: Upper sensor limit of flow rate
- Byte 8-11: Lower sensor limit of flow rate

Byte 12-15: Minimum span of flow rate

Test command:

Send command 14: FF FF FF FF FF 82 9A 1A AD 18 8C 0E 00 35; to read primary sensor serial number and limits.

Receive command 14: FF FF FF FF FF 86 9A 1A AD 18 8C 0E 12 00 00 00 00 00 13 43 96 00 00 00 00 00 38 D1 B7 17 AC

7.1.10 Command 15: Read primary variable output information

Command format:

Read Primary variable alarm select code, primary variable transfer code, primary variable range values units code, primary variable upper and lower range value, primary variable damping value, write protect code and private label distributor code VIII

Request: None

Response:

Byte0:	Alarm select code
Byte1:	Primary variable transfer function code
Byte2:	Primary variable range values unit code
Byte3-6:	Primary variable upper range value, IEEE754
Byte7-10:	Primary variable lower range value, IEEE754
Byte11-14:	Primary variable damping value, IEEE754, units of seconds
Byte15:	Write protect code
Byte16:	Private Label Distributor Code

Test command:

Send command 15:FF FF FF FF FF FF 82 9A 1A AD 18 8C 0F 00 34; Read primary variable output information

Receive command 15:FF FF FF FF FF 86 9A 1A AD 18 8C 0F 13 00 00 00 00 13 43 96 00 00 00 00 00 42 20 00 00 FB 12 6E

7.1.11 Command 16: Read final assembly number

Command format:

Read final assembly number.

Request: None

Response:

Byte 0-2: Final assembly number

Test command:

Send command 16:FF FF FF FF FF FF 82 9A 1A AD 18 8C 10 00 2B; Read final assembly number

Receive command 16: FF FF FF FF FF 86 9A 1A AD 18 8C 10 05 00 00 A8 36 81 35

7.1.12 Command 17: Write message

Command format:

Write message

Request:

Byte 0-23: Message

ALVT

Response:

Byte 0-23: Message

Test command:

Send command 17:FF FF FF FF FF 82 9A 1A AD 18 8C 11 18 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 32 ;message

Receive command 17:FF FF FF FF FF 86 9A 1A AD 18 8C 11 1A 00 00 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 34

7.1.13 Command 18: Write tag, descriptor, date

Command format:

Write tag, descriptor, date.

Request:

Byte 0-5:	Tag,ASCII			
Byte 6-17:	Descriptor,ASCII			
Byte 18-20: Date: day, month, year				

Response:

Byte 0-5:	Tag,ASCII
Byte 6-17:	Descriptor, ASCII

Byte 18-20: Date: day, month, year

Test command:

7.1.14 Command 19: Write final assembly number

Command format:

Write final assembly number

Request:

Byte 0-2: Final assembly number

Response:

Byte 0-2: Final assembly number

Test command:

Send command 19: FF FF FF FF FF 82 9A 1A AD 18 8C 13 03 01 02 03 2B ;

Receive command 19: FF FF FF FF FF 86 9A 1A AD 18 8C 13 05 00 00 01 02 03 29

7.1.15 Command 34: Write primary variable damping value

Command format:

Write primary variable damping value. If value is not acceptable, it will respond with alarm.

Request:

Byte 0-3: Damping value, IEEE754

Response:

Byte 0-3: Actual damping value, IEEE754

Test command:

Send command 34: FF FF FF FF FF FF 82 9A 1A AD 18 8C 22 04 40 00 00 00 5D; Write primary variable damping value

Receive command 34: FF FF FF FF FF 86 9A 1A AD 18 8C 22 06 00 00 40 00 00 05 B

7.1.16 Command 35: Write primary variable range values

Command format:

The upper and lower limits of the primary variable are independent. The primary variable range unit value that this command received has no effect on the primary variable unit value. The primary value range value will be returned in the unit received.

Most device allows that the measurement range upper limit lower than lower limit to support the device to reverse output.

Request:

Byte 0:	Primary variable upper and lower range value unit code
Byte 1-4:	Primary variable upper range limit, IEEE 754
Byte 5-8:	Primary variable lower range limit, IEEE 754

Response:

Byte 0:	Primary variable upper and lower range value unit code
Byte 1-4:	Primary variable upper range limit, IEEE 754
Byte 5-8:	Primary variable lower range limit, IEEE 754

Test command:

Send command 35: FF FF FF FF FF 82 9A 1A AD 18 8C 23 09 13 40 00 00 00 40 00 00 00 02; Write primary variable range values

Receive command 35: FF FF FF FF FF 86 9A 1A AD 18 8C 23 0B 00 00 13 00 00 00 00 00 00 00

00 00 04

7.1.17 Command 36: Write primary variable upper limit value

Command format:

Write the primary variable upper limit to current primary variable value. The change of primary variable upper limit value has no effect on the primary variable lower limit.

Request:

NONE

Response:

NONE

Test command:

Send command 36: FF FF FF FF FF FF 82 9A 1A AD 18 8C 24 00 1F; Write the primary variable upper limit to current primary variable value.

Receive command 36: FF FF FF FF FF 86 9A 1A AD 18 8C 24 02 00 00 19

7.1.18 Command 37: Write primary variable lower limit value

Command format:

Write the primary variable lower limit to current primary variable value. The change of primary variable lower limit value has no effect on the primary variable higher limit.

Request:

NONE

Response:

NONE

Test command:

Send command 37: FF FF FF FF FF 82 9A 1A AD 18 8C 25 00 1E; Write the primary variable lower limit to current primary variable value.

Receive command 37: FF FF FF FF FF 86 9A 1A AD 18 8C 25 02 00 00 18

7.1.19 Command 40: Enter/Exit primary variable current mode

Command format:

Device is set to fixed primary variable current, when primary variable is 0, means to exit primary variable current mode.

Request:

Byte 0-3: Fixed primary variable current level IEEE 754, mA Response:

Byte 0-3: Actual fixed primary variable current level IEEE 754, mA

Test command:

Send command 40: FF FF FF FF FF 82 9A 1A AD 18 8C 28 04 40 80 00 00 D7

Receive command 40: FF FF FF FF FF 86 9A 1A AD 18 8C 28 06 00 00 40 80 00 00 D1

7.1.20 Command 45: Trim primary variable current DAC zero

Command format:

Trim the primary variable current AO zero, so the present current value is accurately set to its min value.

Before implementing this command, use command 40 to set current to accurate primary variable AO min value. If device is not under fixed primary variable current mode or current has not been set to accurate min value, return response code 9---not under correct current mode. Request:

Byte 0-3: Externally measured primary variable current level IEEE754, units of mA Response:

Byte 0-3: Actual measured primary variable current level IEE 754

Test command:

Send command 45: FF FF FF FF FF 82 9A 1A AD 18 8C 2 D 04 40 80 00 00 D2

Receive command 45: FF FF FF FF FF 86 9A 1A AD 18 8C 2D 06 09 00 40 80 00 0D DD : response code is 09, device is not under correct current mode.

7.1.21 Command 46: Trim primary variable current DAC gain

Command format:

Trim primary variable AO gain, so the current value is accurate set to its max value.

Before implementing this command, use command 40 to set current to accurate primary variable AO max value. If device is not under fixed primary variable current mode or current has not been set to accurate max value, need to return response code 9---not under correct current mode.

Request:

ALVT

Byte 0-3: Externally measured primary variable current level IEEE754, units of mA Response:

Byte 0-3: Actual measured primary variable current level IEE 754

Test command:

Send command 46: FF FF FF FF FF 82 9A 1A AD 18 8C 2 E 04 40 80 00 00 D1

Receive command 46: FF FF FF FF FF FF 86 9A 1A AD 18 8C 2E 06 09 00 40 80 00 00 DE : response code is 09, device is not under correct current mode.

7.1.22 Command 140: Reset totalizer

Command format:

Reset totalizer

Request:

NONE

Response:

NONE

Test command:

Send command 140: FF FF FF FF FF 82 9A 1A AD 18 8C 8C 00 B7 Reset totalizer Receive command 140: FF FF FF FF FF 86 9A 1A AD 18 8C 8C 02 00 00 B1

8 Troubleshooting and repair

8.1 Troubleshooting and repair

Symptom	Cause	Trouble-shooting	Remedy	
	Dever everly feilure	Test the voltage on the power	Re-wire or replace the	
	Power supply failure	supply with a DMM	power supply	
	Power supply not	Test the voltage on the power	Wire the power to the	
No diaplay	connected	supply with a DMM	proper terminals	
No display	Open circuit in power	Perform continuity check of	Replace the cable	
	supply cable	the cable with a DMM		
		Perform a visual check/verify	Re-wire	
	Incorrect winnig	correct wiring connections		
	Flow rate is lower	Increase the flow rate to	Increase the flow rate or	
	than the meter's lower	check	replace with a new	
	limit	Check	properly-sized meter	
	The value of small	Check the small signal cut off	Set the small signal cut	
	signal cut off function	setting	off to a lower value	
	is sett too high	John Stanly		
	Energy threshold	Check if the Energy threshold	Set the Energy threshold	
	value is too high	value is too high in spectrum	value to a lower value	
Displayed flow		analysis test mode	(Please refer to Note 1)	
rate is 0 while	Transmitter function	Substitute the transmitter with		
there is flow in the		another transmitter of same	Replace the transmitter	
pipe		type to check		
		Increase the flow rate to		
		check first, and then install		
	Sensor is damaged	the transmitter on another	Replace the sensor	
		flowmeter of same size &		
		type to check.		
	Pipeline blocked or sensor plugged with debris.	If all above possibilities have		
		been eliminated, check the	Re-install the flowmeter	
		pipe line & meter for		
		blockage.		
		Verify that the frequency		
	Power frequency interference	display on meter is stable at	Re-wire the meter with	
		the value that same as the	shielded cable.	
The flowmeter is		power supply frequency		
reading flow while	I here is a high	Check if there is high voltage		
there is no flow in	voltage instrument or	instrument or high frequency		
the pipe	high frequency	interference close to the	Re-locate the flowmeter	
	the flournets	flowmeter		
	There is heavy	Place hand on the pipeline to	Make use of vibration	

	vibration on the pipe line	see if any vibration can be felt	dampening pipe mounts
	Valve not closed / leaky valve	Check pressure and check to see if valve is closed and sealed	Repair the valve
The flow rate reading shows large fluctuations	The flange gasket and the pipe are not concentric	Check the position of the gasket	Re-install the gasket
	The flowmeter body and the pipe line are not concentric	Check the alignment of the flowbody to the pipe	Re-install the meter
	Insufficient straight pipe run upstream or downstream of the meter	Check the straight pipe length and the diameter of the pipeline	Re-locate the flowmeter
	There is heavy vibration on the pipe line	Place hand on the pipeline to see if any vibration can be felt	Make use of vibration dampening pipe mounts
	The pipeline is only partially filled with fluid	Check the fluid level and the location of the meter.	Re-locate the flowmeter
	Two phase flow	Check if there is 2-phase flow based to the pressure and temperature of the fluid.	If the fluid is liquid-solid two phase flow, install a filter upstream of the meter. If the fluid is liquid-gas two phase flow, install a gas eliminator upstream of the meter.
	Transmitter failure	Replace the transmitter with another transmitter of same type to check	Replace the transmitter
There is large difference	No density compensation for steam measurement	Check the density compensation devices and the setting	Correct settings in parameter setting menu
between the flow	The expected flow	Use another flowmeter to confirm the actual flow rate	
expected process flow rate	Incorrect menu settings	Check the settings of meter K factor, upper and lower limit of flow rate	Correct settings in parameter setting menu

Note 1: Enter code setting mode and set C49=12. Press the the button to check the current energy level of the vortex flow signal and vibration signal. E1 is the energy of vortex flow signal; please set the energy threshold value lower than the displayed value. E.1 is the energy of vibration, please set the energy threshold value lower than the displayed value. Set above value in D017 (Energy threshold of vortex flow signal) and D018 (Energy threshold of

8.2 Diagnostic Codes

ALVT vortex flowmeter display can also indicate the self-diagnose code as below:

Error code	Problem	Remedy	
Err-003	Temperature sensor disconnected	Check Temperature sensor	
Err-004	Pressure sensor disconnected	Check pressure sensor	
Err-005	About to exceed/overflow total flow	This is a reminder message	
Err-006	Display value over limit	The value is over the physical limit of the display	
Err-011	Superheated steam temperature is over limit	Reduce the steam temperature	
Err-012	Superheated steam pressure is over limit	Reduce the steam pressure	
Err-013	Button is stuck/ depressed for too long	Check the button	
Err-014	Reset code setting failed	Check EEPROM	
Err-015	Reset digital setting failed	Check EEPROM	
Err-016	Read total flow error	Check EEPROM	
Err-017	Temperature calibration setting is wrong	Check the of temperature calibration cert	
Err-018	Pressure calibration setting is wrong	Check the pressure calibration cert	
Err-020	Flow rate limit setting is incorrect	Check the flow rate limit setting	
Err-021	Temperature limit setting is incorrect	Check the temperature limit setting	
Err-022	Pressure limit setting is incorrect	Check the pressure limit setting	
Err-023	Communication connection error	Check the communication link	
Err-024	Setting is incorrect when using aga_nx_19 to calculate the compressibility factor	Check if the setting for compressibility factor is correct	
Err-025	Frequency output for total flow is over limit	Reset the total flow frequency output factor	
Err-026	3V power source failure	Check the circuit board	

